G4LifeTime(G)

09/22/2012
Antoine LEMASSON
NSCL

Starting point:

original Code from P. Adrich et al. (NIM A) (2009) Geant4 /C++

Nuclear Instruments and Methods in Physics Research A 598 (2009) 454-464

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

A simulation tool for Recoil Distance Method lifetime measurements at NSCL

P. Adrich^a, D. Enderich^a, D. Miller^a, V. Moeller^a, R.P. Norris^a, K. Starosta^{a,*}, C. Vaman^a, P. Voss a. A. Dewald b

^a National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48824-1321, USA ^b Institute for Nuclear Physics, University of Cologne, Zülpicher Str. 77, D-50937 Köln, Germany

Starting point :

original Code from P. Adrich *et al.* (NIM A) (2009) *Geant4 /C++*

Since 2010 - Upgrade of the code :

- Cleaning up, removal of GUIROOT dependencies
- Rewriting of the output/storage and analysis
- More realistic Geometry:
 (Improvement on Caps, Dead layers, ...)
- Additional feature (Cascade decays, ...)
- Long term maintenance:
 Compatibility with upgraded version of G4 (4.9.4p04,),
 Git Version control
- Documentation
 Wiki + Doxygen / Simulation Database

Nuclear Instruments and Methods in Physics Research A 598 (2009) 454–464

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

A simulation tool for Recoil Distance Method lifetime measurements at NSCL

P. Adrich ^a, D. Enderich ^a, D. Miller ^a, V. Moeller ^a, R.P. Norris ^a, K. Starosta ^{a,*}, C. Vaman ^a, P. Voss ^a, A. Dewald ^b

^a National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48824-1321, USA b Institute for Nuclear Physics, University of Cologne, Zülpicher Str. 77, D-50937 Köln, Germany

- Starting point: original Code from P. Adrich et al. (NIM A) (2009) Geant4 /C++
- Since 2010 Upgrade of the code :
 - Cleaning up, removal of GUIROOT dependencies
 - Rewriting of the output/storage and analysis
 - More realistic Geometry:
 (Improvement on Caps, Dead layers, ...)
 - Additional feature (Cascade decays, ...)
 - Long term maintenance:
 Compatibility with upgraded version of G4 (4.9.4p04,),
 Git Version control
 - Documentation
 Wiki + Doxygen / Simulation Database
- Lifetime measurement oriented (RDDS, Line-Shape, DSAM)
- S800 + SeGA (Plunger / Barrel)
 experiments at NSCL

Nuclear Instruments and Methods in Physics Research A 598 (2009) 454–464

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

A simulation tool for Recoil Distance Method lifetime measurements at NSCL

P. Adrich^a, D. Enderich^a, D. Miller^a, V. Moeller^a, R.P. Norris^a, K. Starosta^{a,*}, C. Vaman^a, P. Voss^a. A. Dewald^b

^a National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48824-1321, USA
^b Institute for Nuclear Physics, University of Cologne, Zülpicher Str. 77, D-50937 Köln, Germany

- Starting point: original Code from P. Adrich et al. (NIM A) (2009) Geant4 /C++
- Since 2010 Upgrade of the code :
 - Cleaning up, removal of GUIROOT dependencies
 - Rewriting of the output/storage and analysis
 - More realistic Geometry:
 (Improvement on Caps, Dead layers, ...)
 - Additional feature (Cascade decays, ...)
 - Long term maintenance:
 Compatibility with upgraded version of G4 (4.9.4p04,),
 Git Version control
 - Documentation
 Wiki + Doxygen / Simulation Database
- Lifetime measurement oriented (RDDS, Line-Shape, DSAM)
- S800 + SeGA (Plunger / Barrel) experiments at NSCL
- To date: Version 0.4-RC3 (Sept. 2012)

Nuclear Instruments and Methods in Physics Research A 598 (2009) 454–464

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

A simulation tool for Recoil Distance Method lifetime measurements at NSCL

P. Adrich^a, D. Enderich^a, D. Miller^a, V. Moeller^a, R.P. Norris^a, K. Starosta^{a,*}, C. Vaman^a, P. Voss^a. A. Dewald^b

^a National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48824-1321, US/ ^b Institute for Nuclear Physics, University of Cologne, Zülpicher Str. 77, D-50937 Köln, Germany

Main Features

- Incoming Beam / Outgoing Beam properties
- Basic reaction mechanisms modeling of Knock Out and fragmentation to reproduce S800 measured outgoing momentum (phenomelogical)
- Basic S800 Acceptance cuts on:
 Momentum (dta) and scattering angle (ata, bta)
- Single target or Plunger (Energy loss)
- γ-ray decay in flight (also cascade decays)

Main Features

- Incoming Beam / Outgoing Beam properties
- Basic reaction mechanisms modeling of Knock Out and fragmentation to reproduce \$800 measured outgoing momentum (phenomelogical)
- Basic S800 Acceptance cuts on:
 Momentum (dta) and scattering angle (ata, bta)
- Single target or Plunger (Energy loss)
- γ-ray decay in flight (also cascade decays)

G4Lifetime event timeline

- Shoot Beam
- Track Beam (Energy Loss)
- Reaction
- Track Outgoing reaction product (Energy Loss)
- Decay In flight (Optional)
- Track Gamma rays
- Track Outgoing reaction product (Energy Loss)
- End of Event :
 - Analysis: Sorting events from Hits Collections
 - observables for outgoing ions to S800,
 - Gamma Rays : E_{γ} , interaction points, Segment energies (SEGA), Doppler Correction
 - ROOTRecorder to store in Tree/Histograms

Primary Generator

Energy Loss

Reaction

Decay

Hits Tracking

Analysis

Root Recorder

G4 Data Tree (List Mode)

- Positions (reaction, decay, γ -ray interaction points, ...)
- Ion Energy (Gun, E Loss in target and degraders)

G4 Data Tree (List Mode)

- Positions (reaction, decay, γ-ray interaction points, ...)
- Ion Energy (Gun, E Loss in target and degraders)

Relevant Histograms

- S800 :
 - ata, bta, dta, yta
- SeGA : γ-rays spectra
 - E gamma (lab)
 - E gamma Doppler Corrected (various options ...)

G4 Data Tree (List Mode)

- Positions (reaction, decay, γ-ray interaction points, ...)
- Ion Energy (Gun, E Loss in target and degraders)

Relevant Histograms

- S800 :
 - ata, bta, dta, yta
- SeGA : γ-rays spectra
 - E gamma (lab)
 - E gamma Doppler Corrected (various options ...)
- Modular Beyond ROOT:

 any body should be able to write its own output format (GEB centric?)

G4 Data Tree (List Mode)

- Positions (reaction, decay, γ-ray interaction points, ...)
- Ion Energy (Gun, E Loss in target and degraders)

Relevant Histograms

- S800 :
 - ata, bta, dta, yta
- SeGA : γ-rays spectra
 - E gamma (lab)
 - E gamma Doppler Corrected (various options ...)
- Modular Beyond ROOT:

 any body should be able to write its own output format (GEB centric?)

Practical examples (I)

2+ state lifetime ⁷⁶Sr:

A.L. Phys Rev C, Rapid Com (2012).

- γ -ray peak line-shape method
- 2^+ state lifetime : $T_{1/2} = 205$ (25) ps

Practical examples (II)

TRIPLEX campaign in Dec 2011

(TRIPLE PLUNGER for EXOTIC BEAMS)

1. Br exp : shape coexistence at N=Z

2. Cr exp: collectivity at N=40

Online Spectra

Online spectra compared with preliminary simulations

Simulations were made "" before the experiment ""

G4LifeTime(G) v 0.4 (beta version)

- Including Gretina geometry description from Chris Campbell into G4LifeTime(G)
- /!\ No comparison with "real" data so far !

/!\ Position Resolution 3D Gaussian! FWHM is input

/!\ Geometry into the existing Code, no advanced feature for Add-Back, γ-ray tracking ...

NNSA-NSSC program (2011-2016) improve modeling of advanced γ-ray tracking array (Chris Morse, Kenneth Whitmore, H. Iwasaki, PD(?))

Outlook

Our vision to improve/complete G4LifeTime(G) simulation :

- Improve the description of geometry for Gretina (position, and size of crystal, dead layer)
- Incorporating surrounding materials in the geometry (Sphere, Dewar, Pipe, Plunger, ...)
- Comparison with data:
 - The highest priority of the group is to have spectral shapes which are good enough to be used for lifetime measurement and not much on absolute efficiency for now.
 - Plunger data/lifetime from coming experiments (Oct 2012)
 - Efficiency, Peak to Total for single mode (One crystal)
- Challenges: Understand the effect of Pulse Shape Analysis and Tracking
 - Peak-to-Total, Position resolution, efficiency
 - and incorporate them in GEANT4 simulation ...